В физической химии[ненадежный источник?] и материаловедении текстура — это распределение кристаллографических ориентаций поликристаллического образца (это также часть геологической ткани). Говорят, что образец, в котором эти ориентации полностью случайны, не имеет отчетливой текстуры. Если кристаллографические ориентации не случайны, а имеют некоторую преимущественную ориентацию, то образец имеет слабую, умеренную или сильную текстуру. Степень зависит от процентного содержания кристаллов, имеющих предпочтительную ориентацию.
Текстура присутствует практически во всех инженерных материалах и может иметь большое влияние на свойства материалов. Текстура материалов формируется в ходе термомеханических процессов, например, во время производственных процессов, например. катание. Следовательно, за процессом прокатки часто следует термическая обработка для уменьшения количества нежелательной текстуры. Управление производственным процессом в сочетании с определением характеристик текстуры и микроструктуры материала помогает определить свойства материалов, то есть взаимосвязь обработка-микроструктура-текстура-свойство. Кроме того, геологические породы имеют текстуру из-за термомеханической истории процессов формирования.
Один крайний случай — полное отсутствие текстуры: твердое тело с совершенно случайной ориентацией кристаллитов будет иметь изотропные свойства в масштабах длины, значительно превышающих размер кристаллитов. Противоположная крайность — идеальный монокристалл, который, вероятно, имеет анизотропные свойства по геометрической необходимости.
Характеристика и представление
Текстуру можно определить различными методами. Некоторые методы позволяют провести количественный анализ текстуры, другие — только качественный. Среди количественных методов наиболее широко используется дифракция рентгеновских лучей с использованием текстурных гониометров, а затем метод дифракции обратного рассеяния электронов (EBSD) в сканирующих электронных микроскопах. Качественный анализ можно провести с помощью фотографии Лауэ, простой рентгеновской дифракции или с помощью поляризационного микроскопа. Нейтронная и синхротронная дифракция рентгеновских лучей высоких энергий подходят для определения текстуры сыпучих материалов и анализа in situ, тогда как лабораторные рентгеновские дифракционные приборы больше подходят для анализа текстур тонких пленок.
Текстура часто изображается с помощью полюсной фигуры, в которой заданная кристаллографическая ось (или полюс) каждого из репрезентативного числа кристаллитов отображается в стереографической проекции вместе с направлениями, связанными с историей обработки материала. Эти направления определяют так называемую систему отсчета образца и, поскольку исследование текстур начинаются с холодной обработки металлов, обычно называются направлением прокатки RD, поперечным направлением TD< /i> и направление нормали ND. Для тянутых металлических проволок ось цилиндрического волокна оказалась направлением образца, вокруг которого обычно наблюдается преимущественная ориентация (см. ниже).
Общие текстуры
Существует несколько текстур, которые обычно встречаются в обработанных (кубических) материалах. Они названы либо по имени ученого, который их открыл, либо по названию материала, в котором они чаще всего встречаются. Для упрощения они приведены в индексах Миллера.
Функция распределения ориентации
Полное трехмерное представление кристаллографической текстуры дается функцией распределения ориентации (ODF), которая может быть получена путем оценки набора полюсных фигур или дифракционных картин. Впоследствии все полюсные фигуры могут быть получены из ODF.
ODF определяется как объемная доля зерен с определенной ориентацией .
Ориентация обычно определяется используя три угла Эйлера. Углы Эйлера тогда описывают переход от системы отсчета образца в кристаллографическую систему отсчета каждого отдельного зерна поликристалла. Таким образом, мы получаем большой набор различных углов Эйлера, распределение которых описывается ФРО.
Функция распределения ориентации, ODF, не может быть измерена напрямую никаким методом. Традиционно и дифракция рентгеновских лучей, и EBSD могут собирать полюсные фигуры. Существуют разные методологии получения ODF на основе полюсных фигур или данных в целом. Их можно классифицировать в зависимости от того, как они представляют ODF. Некоторые представляют ФРО как функцию, сумму функций или разлагают ее в ряд гармонических функций. Другие, известные как дискретные методы, делят пространство ODF на ячейки и сосредотачиваются на определении значения ODF в каждой ячейке.
Происхождение
В проволоке и волокне все кристаллы имеют тенденцию иметь почти одинаковую ориентацию в осевом направлении, но почти случайную радиальную ориентацию. Наиболее распространенными исключениями из этого правила являются стекловолокно, не имеющее кристаллической структуры, и углеродное волокно, в котором кристаллическая анизотропия настолько велика, что нить хорошего качества будет представлять собой искаженный монокристалл с приблизительно цилиндрической симметрией (часто сравнивают с желеобразным волокном). рулон). Монокристаллические волокна также не являются редкостью.
Изготовление металлического листа часто включает сжатие в одном направлении и, при эффективных прокатных операциях, растяжение в другом, что может ориентировать кристаллиты в обеих осях с помощью процесса, известного как поток зерна. Однако холодная обработка разрушает большую часть кристаллического порядка, и новые кристаллиты, которые возникают при отжиге, обычно имеют другую текстуру. Контроль текстуры чрезвычайно важен при изготовлении листа кремнистой стали для сердечников трансформаторов (для уменьшения магнитного гистерезиса) и алюминиевых банок (поскольку глубокая вытяжка требует чрезвычайной и относительно однородной пластичности).
Текстура в керамике обычно возникает из-за того, что кристаллиты в пульпе имеют форму, которая зависит от кристаллической ориентации, часто игольчатую или пластинчатую. Эти частицы выравниваются по мере того, как вода покидает пульпу или по мере образования глины.
Литье или другие переходы из жидкости в твердое тело (т. е. осаждение тонких пленок) производят текстурированные твердые тела, когда у атомов есть достаточно времени и энергии активации, чтобы найти места в существующих кристаллах, вместо того, чтобы конденсироваться в аморфное твердое тело или создавать новые кристаллы случайного происхождения. ориентация. Некоторые грани кристалла (часто плотноупакованные плоскости) растут быстрее, чем другие, и кристаллиты, у которых одна из этих плоскостей обращена в направлении роста, обычно вытесняют кристаллы в других ориентациях. В крайнем случае, после определенной длины выживет только один кристалл: он используется в процессе Чохральского (если не используется затравочный кристалл), а также при отливке лопаток турбин и других деталей, чувствительных к ползучести.
Свойства текстур и материалов
Свойства материала, такие как прочность, химическая активность, стойкость к коррозионному растрескиванию под напряжением, свариваемость, деформационное поведение, устойчивость к радиационному повреждению и магнитная восприимчивость, могут сильно зависеть от текстуры материала и связанных с этим изменений в микроструктуре. Во многих материалах свойства зависят от текстуры, и появление неблагоприятных текстур при изготовлении или использовании материала может создать слабые места, которые могут инициировать или усугубить неисправности. Детали могут не работать из-за неблагоприятной текстуры материалов, из которых они состоят. Неисправности могут коррелировать с кристаллической текстурой, образовавшейся во время изготовления или использования этого компонента. Следовательно, учет текстур, которые присутствуют и которые могут образоваться в инженерных компонентах во время их использования, может иметь решающее значение при принятии решений о выборе некоторых материалов и методов, используемых для изготовления деталей из этих материалов. Когда детали выходят из строя во время эксплуатации или неправильного обращения, понимание текстур, возникающих внутри этих деталей, может иметь решающее значение для значимой интерпретации данных анализа отказов.
Тонкопленочные текстуры
В результате эффектов подложки, создающих предпочтительные ориентации кристаллитов, в тонких пленках, как правило, возникают выраженные текстуры. Современные технологические устройства в значительной степени полагаются на поликристаллические тонкие пленки с толщиной в нанометровом и микрометровом диапазонах. Это справедливо, например, для всех микроэлектронных и большинства оптоэлектронных систем или сенсорных и сверхпроводящих слоев. Большинство текстур тонких пленок можно отнести к одному из двух различных типов: (1) для так называемых волоконных текстур ориентация определенной плоскости решетки преимущественно параллельна плоскости подложки; (2) в двуосных текстурах ориентация кристаллитов в плоскости также имеет тенденцию выравниваться относительно образца. Последнее явление соответственно наблюдается в процессах почти эпитаксиального роста, где определенные кристаллографические оси кристаллов в слое имеют тенденцию выравниваться вдоль определенной кристаллографической ориентации (монокристаллической) подложки.
Адаптация текстуры по требованию стала важной задачей в технологии тонких пленок. Например, в случае оксидных соединений, предназначенных для прозрачных проводящих пленок или устройств на поверхностных акустических волнах (ПАВ), полярная ось должна быть ориентирована вдоль нормали к подложке. Другой пример — кабели из высокотемпературных сверхпроводников, которые разрабатываются как оксидные многослойные системы, нанесенные на металлические ленты. Настройка двухосной текстуры в слоях YBa2Cu3O7−δ оказалась решающей предпосылкой для достижения достаточно больших критических токов.
Степень текстуры часто меняется в процессе роста тонких пленок, и наиболее выраженные текстуры получаются только после того, как слой достигает определенной толщины. Таким образом, производителям тонких пленок требуется информация о профиле текстуры или градиенте текстуры, чтобы оптимизировать процесс осаждения. Однако определение градиентов текстуры методом рассеяния рентгеновских лучей является непростой задачей, поскольку в сигнал вносит свой вклад разная глубина образца. Методы, позволяющие адекватно выполнять деконволюцию интенсивности дифракции, были разработаны лишь недавно.