Электромеханическое моделирование

Целью электромеханического моделирования является моделирование электромеханической системы таким образом, чтобы ее физические параметры можно было изучить до создания реальной системы. Оценка параметров с использованием различных теорий оценки в сочетании с физическими экспериментами и физической реализацией путем правильной оценки критериев устойчивости всей системы является основной целью электромеханического моделирования. Математическая модель, основанная на теории, может использоваться или применяться к другой системе для оценки производительности совместной системы в целом. Это хорошо известный и проверенный метод проектирования больших систем управления как для промышленных, так и для академических многопрофильных комплексных систем. В последнее время этот метод также используется в технологии MEMS.

Моделирование чисто механических систем в основном основано на лагранжиане, который является функцией обобщенных координат и связанных с ними скоростей. Если все силы вытекают из потенциала, то поведение динамических систем во времени полностью детерминировано. Для простых механических систем лагранжиан определяется как разность кинетической и потенциальной энергий.

Аналогичный подход существует и для электрической системы. С помощью электрической коэнергии и четко определенных степенных величин уравнения движения определяются однозначно. Роль обобщенных координат играют токи катушек индуктивности и падения напряжения на конденсаторах. Из рассмотрения исключаются все ограничения, например, вызванные законами Кирхгофа. После этого на основе параметров системы должна быть получена подходящая передаточная функция, которая в конечном итоге будет определять поведение системы.

Вследствие этого мы имеем величины (кинетическую и потенциальную энергию, обобщенные силы), определяющие механическую часть, и величины (коэнергию, мощности) для описания электрической части. Это предлагает сочетание механической и электрической частей посредством энергетического подхода. В результате получается расширенный лагранжев формат.